CS4021/4521 INTRODUCTION

CS4021/4521 Advanced Computer Architecture |l

Prof Jeremy Jones
Rm 4.16 top floor South Leinster St (SLS)

jones@scss.tcd.ie

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18



mailto:jones@scss.tcd.ie

CS4021/4521 INTRODUCTION

Timetable Slots

e Mon @5 Salmon
e Thurs @4 LB120

 Frin @3 LBO8

use Fri @ 3 as a tutorial slot when needed

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18

X 7%




CS4021/4521 INTRODUCTION

CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

* mixture of theory and practice

* writing parallel programs (bucket sort, suffix array construction, binary search trees, ...)

* Peterson and Bakery locks [locks without atomic instructions]
* Spin model checker [revision?]
* atomic instructions

e serialising instructions

e caches coherency and the cost of sharing data between CPUs

* lock implementations and their performance [TAS, TATAS, ticket, MCS,, ...]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 3



CS4021/4521 INTRODUCTION

CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

* |ockless data structures and algorithms
= CAS based
= LIFOs, FIFOs, linked, lists, trees, hash tables, ...

" memory management [eg. hazard pointers]

* hardware transactional memory [HTM)]
= Herlihy and Moss [1993]
= |ntel Transactional Synchronisation Extensions (TSX)
= hardware lock elision (HLE)

= restricted transactional memory (RTM)

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18



CS4021/4521 INTRODUCTION

i

USEFUL BOOKS

e The Art of Multiprocessor Programming
Maurice Herlihy and Nir Shavit T SPIN MODEL
CHECKER

e The Spin Model Checker: Primer and Reference Manual

Gerald J. Holzmann

Principles of the
Spin Model Checker

* Principles of the Spin Model Checker

Mordechai Ben-Ari

* Module website https://www.scss.tcd.ie/Jeremy.Jones/CS4021/CS4021.htm

= |ecture notes
= coursework (3 or 4 exercises)

" miscellaneous materials (papers, documentation, sample code, ...)

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 5


https://www.scss.tcd.ie/Jeremy.Jones/CS4021/CS4021.htm

CS4021/4521 INTRODUCTION

ASSESSMENT [5 ECTS]

Coursework: 20%
3 or4coursework projects
Examination: 80%

* Dec 2018
* answer 3 out of 4 questions in 2 hours

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18




CS4021/4521 INTRODUCTION

MALBEC [malbec.scss.tcd.ie]

Supermicro 1U SuperServer 5018D-FNFT

Intel Xeon D-1540 2.0 GHz Broadwell CPU 45W
8 cores / 16 threads

128GB ECC RDIMM

Transactional Synchronization Extensions (TSX)
Haswell TSX implementation had a bug, Broadwell OK

Linux (Debian)
use for coursework
remote access via macneill or VPN

can use VS2017 “Linux development with C++” component to
develop software remotely on malbec from a Windows PC

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18




CS4021/4521 INTRODUCTION

Why lockless algorithms?

clock rate of a single CPU core currently limited to = 4GHz
single CPU core processing power NO longer doubling every 18 months
Intel, AMD, Sun, IBM, ... producing multicore CPUs instead

typical desktop has 4 cores with each core capable of executing 2 threads [hyper-
threading] giving a total of 8 concurrent threads

top-of-range desktop 2014 16 threads, 2016 32 threads, ... [Moore's Law and Joy's Law]
need to be able to exploit cheap threads on multicore CPUs
locked based solutions are simply not scalable as locks INHIBIT parallelism

need to explore lockless data structures and algorithms

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18



CS4021/4521 INTRODUCTION

Consider a Binary Search Tree (BST) as an example
* contains(key) key.

returns 1 if key in tree : left | right
* add(key) \

always adds to a leaf node 20
* remove(key) / \

3 cases depending if node has zero, one or 10 30

two children / \
* operations on tree normally protected by a per 25 40

tree lock which inhibits parallelism /
22

* why can't operations be performed in parallel?

* how much parallelism is possible?

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18



CS4021/4521 INTRODUCTION

BST Operations

* add (50) [single pointer updated]

* add(45) [single pointer updated]

* remove(45) — NO children [one pointer updated] / \
* remove(25) — ONE child [single pointer updated]

* remove(20) — TWO children / \

find node (20)

find smallest key in its right sub tree (22) / \

overwrite key 20 with 22

remove old node 22 (will have zero or one child) 22 50
[key and a pointer updated] /
* variations 45

find largest key in left sub-tree instead of smallest key in right sub tree
move node instead of value

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 10

‘\3.‘



CS4021/4521 INTRODUCTION

Concurrent add operations

» concurrently add(27) and add(50)

OK if adding to different nodes / \

10
» concurrently add(23) and add(24)

problem as adding to same leaf node

result depends on how steps of operations are

/"\

NN

. . 22
interleaved [pointer updates] \\A

could work correctly, BUT... 23
if there is a conflict ONLY one node may be
added [23 or 24, BUT still a valid tree]

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18

24

‘\\.‘

11



CS4021/4521 INTRODUCTION

Concurrent remove operations

5
e concurrently remove(21) and remove(27) \

OK as both are leaf nodes [have NO children]

. concurrently remove(20) and remove(22) / \

10

smallest key in 20's right sub tree is 22 / \

result depends on how steps of operations are
interleaved [key and pointer updates]

could work correctly, BUT ... / \ \

one possible interleave is as follows

both operations find 22 / \
20 is overwritten with 22

old node 22 removed [by both operations], BUT

22 still in tree!

other interleaves possible

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 12



CS4021/4521 INTRODUCTION

Concurrent add and remove operations

* concurrently add(50) and remove(25)

5
* OK as modifying links in different nodes \
20
10 30
25 40

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18

X 7%

50

13



CS4021/4521 INTRODUCTION

‘\\.‘

Concurrent add and remove operations...
* concurrently add(50) and remove(40)
5

* result depends on how steps of operations are \

interleaved [key and pointer updates]

20
« could work correctly, BUT ... / \
ible interl foll - 30
* one possible interleave as follows / \
* 40 deleted, BUT ... 25 40
* 50 also deleted as attached to 40 \
50

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 14



CS4021/4521 INTRODUCTION

Concurrent Operations on a BST

* concurrent operations ARE possible

* probability of a conflict inversely proportional to size of tree
» conflicts proportional to number of concurrent operations

* with a large tree, conflicts between operations will be rare

* with a large tree, should be able to achieve a linear speedup proportional to
number of threads provided that conflicts can be detected and resolved

* protecting tree with a single lock is pessimistic as it assumes conflicts will occur
resulting in NO parallelism

* alockless algorithm is optimistic as it assumes conflicts unlikely to occur and,
when they are detected, they are resolved — allows parallelism while there are no
conflicts which hopefully is most of the time

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 15



