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Timetable Slots

e Mon @5 Salmon
e Thurs @4 LB120

 Frin @3 LBO8

use Fri @ 3 as a tutorial slot when needed
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CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

* mixture of theory and practice

* writing parallel programs (bucket sort, suffix array construction, binary search trees, ...)

* Peterson and Bakery locks [locks without atomic instructions]
* Spin model checker [revision?]
* atomic instructions

e serialising instructions

e caches coherency and the cost of sharing data between CPUs

* lock implementations and their performance [TAS, TATAS, ticket, MCS,, ...]
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CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

* |ockless data structures and algorithms
= CAS based
= LIFOs, FIFOs, linked, lists, trees, hash tables, ...

" memory management [eg. hazard pointers]

* hardware transactional memory [HTM)]
= Herlihy and Moss [1993]
= |ntel Transactional Synchronisation Extensions (TSX)
= hardware lock elision (HLE)

= restricted transactional memory (RTM)
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i

USEFUL BOOKS

e The Art of Multiprocessor Programming
Maurice Herlihy and Nir Shavit T SPIN MODEL
CHECKER

e The Spin Model Checker: Primer and Reference Manual

Gerald J. Holzmann

Principles of the
Spin Model Checker

* Principles of the Spin Model Checker

Mordechai Ben-Ari

* Module website https://www.scss.tcd.ie/Jeremy.Jones/CS4021/CS4021.htm

= |ecture notes
= coursework (3 or 4 exercises)

" miscellaneous materials (papers, documentation, sample code, ...)
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ASSESSMENT [5 ECTS]

Coursework: 20%
3 or4coursework projects
Examination: 80%

* Dec 2018
* answer 3 out of 4 questions in 2 hours
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MALBEC [malbec.scss.tcd.ie]

Supermicro 1U SuperServer 5018D-FNFT

Intel Xeon D-1540 2.0 GHz Broadwell CPU 45W
8 cores / 16 threads

128GB ECC RDIMM

Transactional Synchronization Extensions (TSX)
Haswell TSX implementation had a bug, Broadwell OK

Linux (Debian)
use for coursework
remote access via macneill or VPN

can use VS2017 “Linux development with C++” component to
develop software remotely on malbec from a Windows PC
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Why lockless algorithms?

clock rate of a single CPU core currently limited to = 4GHz
single CPU core processing power NO longer doubling every 18 months
Intel, AMD, Sun, IBM, ... producing multicore CPUs instead

typical desktop has 4 cores with each core capable of executing 2 threads [hyper-
threading] giving a total of 8 concurrent threads

top-of-range desktop 2014 16 threads, 2016 32 threads, ... [Moore's Law and Joy's Law]
need to be able to exploit cheap threads on multicore CPUs
locked based solutions are simply not scalable as locks INHIBIT parallelism

need to explore lockless data structures and algorithms
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Consider a Binary Search Tree (BST) as an example
* contains(key) key.

returns 1 if key in tree : left | right
* add(key) \

always adds to a leaf node 20
* remove(key) / \

3 cases depending if node has zero, one or 10 30

two children / \
* operations on tree normally protected by a per 25 40

tree lock which inhibits parallelism /
22

* why can't operations be performed in parallel?

* how much parallelism is possible?
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BST Operations

* add (50) [single pointer updated]

* add(45) [single pointer updated]

* remove(45) — NO children [one pointer updated] / \
* remove(25) — ONE child [single pointer updated]

* remove(20) — TWO children / \

find node (20)

find smallest key in its right sub tree (22) / \

overwrite key 20 with 22

remove old node 22 (will have zero or one child) 22 50
[key and a pointer updated] /
* variations 45

find largest key in left sub-tree instead of smallest key in right sub tree
move node instead of value
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Concurrent add operations

» concurrently add(27) and add(50)

OK if adding to different nodes / \

10
» concurrently add(23) and add(24)

problem as adding to same leaf node

result depends on how steps of operations are

/"\

NN

. . 22
interleaved [pointer updates] \\A

could work correctly, BUT... 23
if there is a conflict ONLY one node may be
added [23 or 24, BUT still a valid tree]
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Concurrent remove operations

5
e concurrently remove(21) and remove(27) \

OK as both are leaf nodes [have NO children]

. concurrently remove(20) and remove(22) / \

10

smallest key in 20's right sub tree is 22 / \

result depends on how steps of operations are
interleaved [key and pointer updates]

could work correctly, BUT ... / \ \

one possible interleave is as follows

both operations find 22 / \
20 is overwritten with 22

old node 22 removed [by both operations], BUT

22 still in tree!

other interleaves possible
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Concurrent add and remove operations

* concurrently add(50) and remove(25)

5
* OK as modifying links in different nodes \
20
10 30
25 40
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Concurrent add and remove operations...
* concurrently add(50) and remove(40)
5

* result depends on how steps of operations are \

interleaved [key and pointer updates]

20
« could work correctly, BUT ... / \
ible interl foll - 30
* one possible interleave as follows / \
* 40 deleted, BUT ... 25 40
* 50 also deleted as attached to 40 \
50
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Concurrent Operations on a BST

* concurrent operations ARE possible

* probability of a conflict inversely proportional to size of tree
» conflicts proportional to number of concurrent operations

* with a large tree, conflicts between operations will be rare

* with a large tree, should be able to achieve a linear speedup proportional to
number of threads provided that conflicts can be detected and resolved

* protecting tree with a single lock is pessimistic as it assumes conflicts will occur
resulting in NO parallelism

* alockless algorithm is optimistic as it assumes conflicts unlikely to occur and,
when they are detected, they are resolved — allows parallelism while there are no
conflicts which hopefully is most of the time
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