
CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 1

CS4021/4521 Advanced Computer Architecture II

Prof Jeremy Jones

Rm 4.16 top floor South Leinster St (SLS)

jones@scss.tcd.ie

South Leinster St

mailto:jones@scss.tcd.ie

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 2

Timetable Slots

• Mon @ 5 Salmon

• Thurs @ 4 LB120

• Fri @ 3 LB08

use Fri @ 3 as a tutorial slot when needed

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 3

CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

• mixture of theory and practice

• writing parallel programs (bucket sort, suffix array construction, binary search trees, …)

• Peterson and Bakery locks [locks without atomic instructions]

• Spin model checker [revision?]

• atomic instructions

• serialising instructions

• caches coherency and the cost of sharing data between CPUs

• lock implementations and their performance [TAS, TATAS, ticket, MCS,, …]

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 4

CONCURRENT PROGRAMMING WITH AND WITHOUT LOCKS

• lockless data structures and algorithms

 CAS based

 LIFOs, FIFOs, linked, lists, trees, hash tables, …

 memory management [eg. hazard pointers]

• hardware transactional memory [HTM]

 Herlihy and Moss [1993]

 Intel Transactional Synchronisation Extensions (TSX)

 hardware lock elision (HLE)

 restricted transactional memory (RTM)

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 5

USEFUL BOOKS

• The Art of Multiprocessor Programming

Maurice Herlihy and Nir Shavit

• The Spin Model Checker: Primer and Reference Manual

Gerald J. Holzmann

• Principles of the Spin Model Checker

Mordechai Ben-Ari

• Module website https://www.scss.tcd.ie/Jeremy.Jones/CS4021/CS4021.htm

 lecture notes

 coursework (3 or 4 exercises)

 miscellaneous materials (papers, documentation, sample code, …)

https://www.scss.tcd.ie/Jeremy.Jones/CS4021/CS4021.htm

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 6

ASSESSMENT [5 ECTS]

Coursework: 20%

• 3 or 4 coursework projects

Examination: 80%

• Dec 2018

• answer 3 out of 4 questions in 2 hours

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 7

MALBEC [malbec.scss.tcd.ie]

Supermicro 1U SuperServer 5018D-FNFT
Intel Xeon D-1540 2.0 GHz Broadwell CPU 45W
8 cores / 16 threads
128GB ECC RDIMM

Transactional Synchronization Extensions (TSX)
Haswell TSX implementation had a bug, Broadwell OK

Linux (Debian)

use for coursework

remote access via macneill or VPN

can use VS2017 “Linux development with C++” component to
develop software remotely on malbec from a Windows PC

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 8

Why lockless algorithms?

• clock rate of a single CPU core currently limited to ≈ 4GHz

• single CPU core processing power NO longer doubling every 18 months

• Intel, AMD, Sun, IBM, … producing multicore CPUs instead

• typical desktop has 4 cores with each core capable of executing 2 threads [hyper-
threading] giving a total of 8 concurrent threads

• top-of-range desktop 2014 16 threads, 2016 32 threads, … [Moore's Law and Joy's Law]

• need to be able to exploit cheap threads on multicore CPUs

• locked based solutions are simply not scalable as locks INHIBIT parallelism

• need to explore lockless data structures and algorithms

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 9

• contains(key)
returns 1 if key in tree

• add(key)
always adds to a leaf node

• remove(key)
3 cases depending if node has zero, one or
two children

• operations on tree normally protected by a per
tree lock which inhibits parallelism

• why can't operations be performed in parallel?

• how much parallelism is possible?

10 30

25

20

40

22

5

Consider a Binary Search Tree (BST) as an example

key

left right

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 10

BST Operations

• add (50) [single pointer updated]
• add(45) [single pointer updated]
• remove(45) – NO children [one pointer updated]
• remove(25) – ONE child [single pointer updated]
• remove(20) – TWO children

find node (20)
find smallest key in its right sub tree (22)
overwrite key 20 with 22
remove old node 22 (will have zero or one child)
[key and a pointer updated]

• variations

find largest key in left sub-tree instead of smallest key in right sub tree
move node instead of value

10 30

25

20

40

50

45

22

22

5

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 11

Concurrent add operations

• concurrently add(27) and add(50)

OK if adding to different nodes

• concurrently add(23) and add(24)

problem as adding to same leaf node

result depends on how steps of operations are
interleaved [pointer updates]

could work correctly, BUT...
if there is a conflict ONLY one node may be
added [23 or 24, BUT still a valid tree]

10 30

25

20

40

502722

5

23 24

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 12

Concurrent remove operations

• concurrently remove(21) and remove(27)

OK as both are leaf nodes [have NO children]

• concurrently remove(20) and remove(22)

smallest key in 20's right sub tree is 22
result depends on how steps of operations are
interleaved [key and pointer updates]
could work correctly, BUT ...
one possible interleave is as follows

both operations find 22
20 is overwritten with 22
old node 22 removed [by both operations], BUT
22 still in tree!

other interleaves possible

10 30

25 40

5027

20

22

5

2321

22

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 13

Concurrent add and remove operations

• concurrently add(50) and remove(25)

• OK as modifying links in different nodes

10 30

25 40

50

20

5

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 14

Concurrent add and remove operations...

• concurrently add(50) and remove(40)

• result depends on how steps of operations are
interleaved [key and pointer updates]

• could work correctly, BUT ...

• one possible interleave as follows

• 40 deleted, BUT ...
• 50 also deleted as attached to 40

10 30

25 40

50

20

5

CS4021/4521 INTRODUCTION

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 11-Sep-18 15

Concurrent Operations on a BST

• concurrent operations ARE possible

• probability of a conflict inversely proportional to size of tree

• conflicts proportional to number of concurrent operations

• with a large tree, conflicts between operations will be rare

• with a large tree, should be able to achieve a linear speedup proportional to
number of threads provided that conflicts can be detected and resolved

• protecting tree with a single lock is pessimistic as it assumes conflicts will occur
resulting in NO parallelism

• a lockless algorithm is optimistic as it assumes conflicts unlikely to occur and,
when they are detected, they are resolved – allows parallelism while there are no
conflicts which hopefully is most of the time

